Warning: mkdir(): No space left on device in /var/www/tg-me/post.php on line 37
Warning: file_put_contents(aCache/aDaily/post/dsproglib/--): Failed to open stream: No such file or directory in /var/www/tg-me/post.php on line 50 Библиотека дата-сайентиста | Data Science, Machine learning, анализ данных, машинное обучение | Telegram Webview: dsproglib/6445 -
При работе с большими объёмами данных Python может «тормозить», особенно при обработке сотен тысяч строк или обучении сложных ML-моделей.
🎯 Ниже — два приёма, которые позволят ускорить обучение и загрузку данных в десятки раз.
1️⃣ Используйте GPU с включённым memory growth
По умолчанию TensorFlow может попытаться занять всю память видеокарты, что приводит к ошибке OOM. Решение — включить «постепенное» выделение памяти:
gpus = tf.config.experimental.list_physical_devices('GPU') if gpus: for gpu in gpus: tf.config.experimental.set_memory_growth(gpu, True)
2️⃣ Оптимизируйте загрузку данных с `tf.data`
Загрузка Excel-файла — типичное узкое место (Disk I/O). Использование tf.data.Dataset с prefetch позволяет загружать и обрабатывать данные асинхронно.
Пример:
dataset = tf.data.Dataset.from_generator( data_generator, output_signature={col: tf.TensorSpec(shape=(), dtype=tf.float32) for col in data.columns} ).shuffle(1000).batch(32).prefetch(tf.data.AUTOTUNE)
📎Вывод: GPU и tf.data с правильной настройкой дают мощный прирост производительности. Особенно важно при работе с крупными ML-пайплайнами и в продакшене.
При работе с большими объёмами данных Python может «тормозить», особенно при обработке сотен тысяч строк или обучении сложных ML-моделей.
🎯 Ниже — два приёма, которые позволят ускорить обучение и загрузку данных в десятки раз.
1️⃣ Используйте GPU с включённым memory growth
По умолчанию TensorFlow может попытаться занять всю память видеокарты, что приводит к ошибке OOM. Решение — включить «постепенное» выделение памяти:
gpus = tf.config.experimental.list_physical_devices('GPU') if gpus: for gpu in gpus: tf.config.experimental.set_memory_growth(gpu, True)
2️⃣ Оптимизируйте загрузку данных с `tf.data`
Загрузка Excel-файла — типичное узкое место (Disk I/O). Использование tf.data.Dataset с prefetch позволяет загружать и обрабатывать данные асинхронно.
Пример:
dataset = tf.data.Dataset.from_generator( data_generator, output_signature={col: tf.TensorSpec(shape=(), dtype=tf.float32) for col in data.columns} ).shuffle(1000).batch(32).prefetch(tf.data.AUTOTUNE)
📎Вывод: GPU и tf.data с правильной настройкой дают мощный прирост производительности. Особенно важно при работе с крупными ML-пайплайнами и в продакшене.
The campaign, which security firm Check Point has named Rampant Kitten, comprises two main components, one for Windows and the other for Android. Rampant Kitten’s objective is to steal Telegram messages, passwords, and two-factor authentication codes sent by SMS and then also take screenshots and record sounds within earshot of an infected phone, the researchers said in a post published on Friday.
Unlimited members in Telegram group now
Telegram has made it easier for its users to communicate, as it has introduced a feature that allows more than 200,000 users in a group chat. However, if the users in a group chat move past 200,000, it changes into "Broadcast Group", but the feature comes with a restriction. Groups with close to 200k members can be converted to a Broadcast Group that allows unlimited members. Only admins can post in Broadcast Groups, but everyone can read along and participate in group Voice Chats," Telegram added.
Библиотека дата сайентиста | Data Science Machine learning анализ данных машинное обучение from vn